THE MOD p REPRESENTATION THEORY OF p - ADIC GROUPS

نویسنده

  • FLORIAN HERZIG
چکیده

Exercise 1 (Maximal compact subgroups of G). A lattice in Qp is a finitelygenerated Zp-submodule of Qp that generates Qp as vector space. In particular, it’s free of rank n. Note that G acts transitively on the set of lattices in Qp . (i) Show that K = StabG(Zp ). (ii) Suppose that K ′ is a compact subgroup of G. Show that K ′ stabilises a lattice. (Hint: show that the K ′-orbit of Zp is finite and note that a finite sum of lattices is a lattice.) (iii) Deduce that every compact subgroup is contained in a maximal compact subgroup and that any maximal compact subgroup is conjugate to K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPECULATIONS ON THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS

The mod p representation theory of p-adic groups began with the papers [5, 6] that treated the case of G = GL(2, K), where K is a nonarchimedean local field. Those papers already revealed an interesting dichotomy that continues to dominate the subject. On the one hand, if B ⇢ G is a Borel subgroup, then any homomorphism from B to F⇥, where F is an algebraically closed field of characteristic p,...

متن کامل

A SATAKE ISOMORPHISM IN CHARACTERISTIC p

Suppose that G is a connected reductive group over a p-adic field F , that K is a hyperspecial maximal compact subgroup of G(F ), and that V is an irreducible representation of K over the algebraic closure of the residue field of F . We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported, Kbiequivariant functions f : G(F ) EndV . These Hecke algebras wer...

متن کامل

A CLASSIFICATION OF THE IRREDUCIBLE ADMISSIBLE GENUINE MOD p REPRESENTATIONS OF p-ADIC S̃L2

We classify the irreducible, admissible, smooth, genuine mod p representations of the metaplectic double cover of SL2(F ), where F is a p-adic field and p 6= 2. We show, using a generalized Satake transform, that each such representation is isomorphic to a certain explicit quotient of a compact induction from a maximal compact subgroup by an action of a spherical Hecke operator, and we define a...

متن کامل

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS

1.1. The p-adic numbers. A rational number x ∈ Q× may be uniquely written as x = ab p n with a, b and n nonzero integers such that p ab. We define ordp(x) = n, |x|p = p−n, |0|p = 0. |·|p defines an absolute value on Q, satisfying the stronger ultrametric triangle equality |x+ y|p ≤ max(|x|p, |y|p). We define Qp to be the completion Q with respect to this metric and we use the same notation | · ...

متن کامل

ON A RAMIFICATION BOUND OF THE MOD p REPRESENTATIONS OF THE p-ADIC ÉTALE COHOMOLOGY GROUPS OVER A LOCAL FIELD

For a rational prime p > 2, let k be a perfect field of characteristic p, W = W (k) be the ring of Witt vectors, K be a finite totally ramified extension of Frac(W ) of degree e and r be an integer satisfying r < p − 1. In this paper, we prove the upper numbering ramification group G (j) K for j > 1+ e(1+ r/(p− 1)) acts trivially on the mod p representation associated to the p-adic étale cohomo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012